The origin of diffusion: the case of non-chaotic systems
نویسندگان
چکیده
We investigate the origin of diffusion in non-chaotic systems. As an example, we consider 1D map models whose slope is everywhere 1 (therefore the Lyapunov exponent is zero) but with random quenched discontinuities and quasi-periodic forcing. The models are constructed as non-chaotic approximations of chaotic maps showing deterministic diffusion, and represent one-dimensional versions of a Lorentz gas with polygonal obstacles (e.g., the Ehrenfest wind-tree model). In particular, a simple construction shows that these maps define non-chaotic billiards in space–time. The models exhibit, in a wide range of the parameters, the same diffusive behavior of the corresponding chaotic versions. We present evidence of two sufficient ingredients for diffusive behavior in one-dimensional, non-chaotic systems: (i) a finite size, algebraic instability mechanism; (ii) a mechanism that suppresses periodic orbits. © 2003 Elsevier Science B.V. All rights reserved. PACS: 05.45.−a; 05.60.−k
منابع مشابه
Investigating the Land Use Changes in the Upstream of the Zayandehrood Dam (A Study Case: The Toff-sefid Watershed, Chaharmaha and Bakhtiari Provin
River discharge is among the influential factors on the operation of water resources systems and the design of hydraulic structures, such as dams; so the study of it is of great importance. Several effective factors on this non-linear phenomenon have caused the discharge to be assumed as being accidental. According to the basics the chaos theory, the seemingly random and chaotic systems have re...
متن کاملInvestigating the Chaotic Nature of Flow the Upstream and Downstream of Zayandehrud-Dam Reservoir Using Chaotic Systems’ Criteria
River discharge is among the influential factors on the operation of water resources systems and the design of hydraulic structures, such as dams; so the study of it is of great importance. Several effective factors on this non-linear phenomenon have caused the discharge to be assumed as being accidental. According to the basics the chaos theory, the seemingly random and chaotic systems have re...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملDesign of A No-chatter Fractional Sliding Mode Control Approach for Stabilization of Non-Integer Chaotic Systems
A nonlinear chattering-free sliding mode control method is designed to stabilize fractional chaotic systems with model uncertainties and external disturbances. The main feature of this controller is rapid convergence to equilibrium point, minimize chattering and resistance against uncertainties. The frequency distributed model is used to prove the stability of the controlled system based on dir...
متن کاملFinite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003